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We present a study of events with W bosons and hadronic jets produced in pp collisions at a
center of mass energy of 1.8 TeV. The data consist of 51400 W�

! e�� decay candidates from
108 pb�1 of integrated luminosity collected with the CDF detector at the Tevatron Collider. The
cross sections and jet production properties have been measured for W + �1 to �4 jet events. The
data are compared to predictions of leading order QCD matrix element calculations with added
gluon radiation and simulated parton fragmentation.
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The production ofW bosons in pp collisions at the Fer-
milab Tevatron Collider provides the opportunity to test
perturbative QCD predictions at large momentum trans-
fers. Previous analyses have used these data to study W
production and decay properties [1{3], diboson (WW ,
WZ, W) production [4,5], and the pair production of
top quarks [6,7]. In this Letter, we present cross section
measurements and kinematic properties of direct single
W boson production with jets. After W events from top
decay are removed, the data are compared to quantum
chromodynamics (QCD) predictions of single W + jet
production. These comparisons test how well the stan-
dard model predicts hadronic production properties of
W bosons at the highest center of mass energies studied
to date.
This analysis uses 108 pb�1 of integrated luminosity

collected with the CDF detector [8] from 1992{95. The
principal detector elements used for this measurement are
the vertex tracking chamber (VTX), the central tracking
chamber (CTC), and the calorimeters. The VTX, a wire
time-projection chamber, locates interactions along the
beam direction. The CTC, a cylindrical drift chamber,
measures the momenta of charged particles in the region
j�j < 1:1 [9]. Both tracking detectors are immersed in a
1.4 T magnetic �eld. The electromagnetic and hadronic
calorimeters cover the range j�j < 4:2 and are used to
measure the energies of electrons and jets.
W� ! e�� decay candidates are identi�ed in events

that pass a high transverse energy (ET = E sin �) elec-
tron trigger. The event selection requires an isolated [10]
electron in the central calorimeter (j�j � 1:1) that has
ET � 20 GeV and satis�es tight selection criteria [11].
The reconstructed neutrino transverse energy ( 6ET ), mea-
sured from the imbalance of ET in the calorimeter, must
exceed 30 GeV.
Jets in the W events are clustered using a cone algo-

rithm [12] with radius �R �
p
��2 +��2 = 0:4. We

account for parton energy deposited outside the cone,
and correct for energy contaminating the cone from both
the underlying event and additional pp interactions. We
count jets with ET � 15 GeV and j�j � 2:4, and reject
any events that have a jet within �R = 0.52 of an elec-
tron. Of 51431 W candidate events, 11144 events have
�1 jet, 2596 have �2 jets, 580 have �3 jets, 126 have
�4 jets, and 21 have �5 jets. These jet multiplicities are
subsequently corrected for jets produced in additional pp
interactions that occur in the same bunch crossing as the
W event. There is a 1% probability that an event will
have a single extra jet; the probability drops by about a
factor of 6 for each additional extra jet.
The systematic uncertainties on jet counting are de-

termined by varying the jet energy by �5%, the jet j�j
by �0.2, the probability of jets from additional pp inter-
actions by +100%

�50%
, and the correction for energy contam-

ination in the jet cone by �50% (�0.5 GeV on average).
The combined uncertainty ranges from 10% for the �1 jet

sample to 30% for the �4 jet sample and dominates the
uncertainties in the W + jet cross section measurements.
We measure the cross section for pp ! W produc-

tion as a function of jet multiplicity n from the number
of observed W candidates with �n jets (Nn) using the
equation

�n � BR = �0 � BR �
Nn � Bn

�n
�

�0

N0 � B0

(1)

where �n is the W detection e�ciency, Bn is the esti-
mated background, and BR is the branching ratio for
W� ! e�� decay. For the inclusive cross section times
branching ratio (�0�BR) we use a previous CDF measure-
ment of 2490 � 120 pb [13]. This method takes advan-
tage of the cancellation of some systematic uncertainties
in the ratios, and gives the most accurate relative W +
�n jet cross sections.
The estimate of Bn in Eq. (1) includes Z ! e+e�,

W ! ��, and direct QCD multijet production. The
Z ! e+e� andW ! �� contributions are small (3%) and
have a negligible e�ect on the ratios. Multijet contamina-
tion is measured with a sample obtained by removing the
electron isolation and 6ET requirements of theW selection
and then extrapolating from the multijet-dominated re-
gion into the W signal region. This background ranges
from (2.9 � 0.9)% for the �0 jet sample to (27 � 11)%
for the �4 jet sample.
In order to isolate direct single W production (qq0 !

W ), Bn also includes standard model predictions of di-
boson and top quark production. The contribution from
WW and WZ production is negligible; however, we in-
clude a correction to the jet multiplicity to account for
W events in which the photon is reconstructed as a jet.
This is predicted to occur in (0.4 � 0.1)% of events. The
rate ofW� ! e�� events from standard model tt ranges
from (0:08�0:02)% for �0 jet events to (26�5)% for �4
jet events. The cross sections and kinematic distributions
are corrected for these contributions.
The �nal correction to the number ofW� ! e�� + �n

jet candidates accounts for the e�ciency (�n in Eq. (1))
of identifyingW� ! e�� decays. The acceptance due to
restrictions on the electron ET , 6ET , and detector �du-
cial volume was determined using a leading-order QCD
calculation [14] for W + �1 to �4 jets. The electron-
jet overlap rate is calculated directly from the data by
taking Z ! e+e� events and replacing the Z ! e+e�

decay with a simulatedW� ! e�� decay, preserving the
boson transverse momentum (pT ). The overall e�ciency
also includes the e�ciency of the online trigger and the
e�ciency of the electron identi�cation. The combined
e�ciency is (19.6 � 0.3)% for W+ �0 jets and remains
nearly constant as a function of the number of jets.
The measured cross sections for single W� ! e�� +

�n jet events are listed in Table I and plotted in Fig. 1.
Also included in Table I are the ratios �n=�n�1, which
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FIG. 1. Cross sections for W�

! e�� + �n jets (top) and
Z ! e+e� + �n jets (bottom) versus inclusive jet multiplic-
ity. The lines are �ts of an exponential to the data. The
theory is shown as a shaded band which represents the uncer-
tainty due to the renormalization scale. The �0 jet prediction
is a Born-level calculation for W production.

show that the cross sections fall by about a factor of �ve
with each additional jet.
The measured cross sections and kinematic distribu-

tions are compared to predictions of leading order (LO)
pertubative QCD using the VECBOS [14] Monte Carlo
program. We use a two-loop �s evolution evaluated at
renormalization scales of either Q2 = hpT i

2 of the par-
tons or M2

W + p2TW of the boson, representing reasonable
extremes. The CTEQ3M [15] parton density functions
are used with the factorization scale set to the renor-
malization scale. The QCD predictions are at least �ve
times more sensitive to the renormalization scale than
to the factorization scale or the choice of parton density
functions (e.g. MRSA' [16]). Initial state gluon radia-
tion, �nal state parton fragmentation, and hadronization
are simulated using the HERWIG [17] Monte Carlo pro-
gram. This procedure represents a partial higher-order
correction to the tree-level diagrams and we refer to it as
enhanced leading order (ELO). The generated hadronic
showers are processed with the full CDF detector sim-
ulation. The same reconstruction and selection criteria
applied to experimental data are used on the simulated
data.
The QCD predictions are listed in Table I and plotted

with the measured cross sections in Fig. 1. The sensitiv-
ity of the calculated cross sections to the renormalization
scale is indicated by the shaded band. The harder Q2
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(a)
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(c)

(d)

FIG. 2. Transverse energy distribution of the (a) highest
ET jet in �1 jet events, (b) second highest ET jet in �2 jet
events, (c) third highest ET jet in �3 jet events, and (d)
fourth highest ET jet in �4 jet events. The curves represent
the ELO QCD predictions. The renormalization scale Q2

is hpT i2 for the solid curves and M2
W + p2TW for the dashed

curves (a{c only). The theory is normalized to the data for
each distribution and the errors are the sum of statistical and
systematic uncertainties.

scale (M2
W + p2TW ) predicts relative cross sections that

are consistent with the measured cross sections but are
low in magnitude by about a factor 1.6, while the softer
Q2 scale (hpT i

2) predicts cross sections generally closer in
magnitude but with a ratio ranging from 1.28 for �1 jets
to 0.53 for �4 jets. Thus, within the inherent uncertainty
of the LO calculation, the predicted and measured W +
�n jet cross sections are in agreement for n = 2 to 4.
For comparison, Fig. 1 also shows the cross sections and
QCD predictions for Z + �n jets from a previous CDF
measurement [18]. These have the same general features
as W production, but are lower in cross section by about
a factor of 10.
Details of the QCD predictions are studied using kine-

matic distributions of jets in W events. We select events
from the ELO simulated W sample with the same se-
lection criteria used for the data. Shape comparisons
are made by normalizing the theory to data. We �rst
compare the measured ET spectra (Fig. 2) of jets 1{4,
ordered by decreasing ET , to the ELO QCD prediction
[19]. The sensitivity of the prediction to the renormal-
ization scale is illustrated by varying it from hpT i

2 (solid
curve) toM2

W +p2TW (dotted curve). The correspondence
between data and theory for these distributions is more
clearly seen in Fig. 3, which shows (data{theory)/theory
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2) for the jet

transverse energy distribution of the �rst and second high-
est ET jets in (a) �1 and (b) �2 jet events, respectively. The
error bars are statistical uncertainties and the band repre-
sents the systematic uncertainty on the shape. The theory is
normalized to the data.

for the same spectra. Correlations between jets are stud-
ied by measuring the separation (�Rjj) and invariant
mass (Mjj) of pairs of jets. The distributions of �Rjj

and Mjj for the two highest ET jets in �2 jet and �3 jet
events are shown in Fig. 4. The systematic uncertainties
are determined by the change in the distributions when
the jet energy and subtracted backgrounds are varied in-
dependently within their �1� limits. The error bars in
Figs. 2 and 4 include statistical and systematic uncer-
tainties.
The shape comparisons in Figs. 2{4 demonstrate that

the ELO QCD predictions reproduce the main features
of both the jet ET and jet-jet correlation distributions.
In particular, the measured and predicted jet ET spectra
for the four highest ET jets generally remain within 15%
over three orders of magnitude. The correlation between
jets, as measured by �Rjj, is well predicted by the QCD
calculation (Fig. 4c and d), and the measured invariant
mass distributions (Fig. 4a and b) are in fair agreement
with the QCD predictions. However, the high statistics
of our W + �1 jet sample show the limitation of this
QCD prediction. Fig. 3a shows that the theory calcula-
tion underestimates the cross section for the lowest ET
(< 20 GeV) and highest ET (> 100 GeV) jets. These
regions rely heavily upon the partial higher-order correc-
tions generated by HERWIG. At low ET , initial state
gluon radiation is sometimes hard enough to become the
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FIG. 4. Distributions of dijet mass and separation in ���

space between the two highest-ET jets for W + �2 jet events
(top) and W + �3 jet events (bottom). The curves represent
the ELO QCD predictions: Q2 = hpT i

2 (solid) and Q2 =
M2

W + p2TW (dashed).

highest ET jet and supersede the parton generated in the
LO matrix element. For events with the highest jet ET
> 100 GeV, over 50% of the W + �1 jet events have at
least 2 jets which explicitly indicates the need for higher-
order corrections to the W + 1 parton calculation. As
expected, the ELO QCD calculation only partly corrects
for the higher-order QCD terms.
In summary, this Letter contains an analysis of jet

production associated with W� ! e�� events selected
from 108 pb�1 of pp collisions at a center of mass energy
of 1.8 TeV. Data are compared to enhanced LO QCD
predictions (LO parton matrix elements with HERWIG-
simulated fragmentation) to determine the reliability of
QCD calculations. The ratio of the measured to pre-
dicted cross section is 1.28 � 0.16 (Q2 = hpT i

2) and
1.65 � 0.20 (Q2 = M2

W + p2TW ) for pp ! W + �1 jet
events. For higher jet multiplicities, the two Q2 predic-
tions bracket the measurement, with the Q2 =M2

W+p2TW
prediction at a approximately constant fraction below
the measured cross section. The shapes of the QCD-
predicted jet production properties are in general agree-
ment with the data, but the statistics of the W� ! e��

data are large enough to show some limitations of the
enhanced LO QCD predictions.
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n �n �BR(W
�

! e��) Q2 = hpT i
2 Q2 =M2

W + p2TW �n=�n�1
Jets (pb) BR � �QCD �Data=�QCD BR � �QCD �Data=�QCD (Data)

�1 471 � 5 � 57 367 � 5 1.28 � 0.16 285 � 4 1.65 � 0.20 0.189 � 0.021
�2 101 � 2 � 19 112 � 5 0.90 � 0.17 58.1 � 1.5 1.74 � 0.33 0.214 � 0.015
�3 18.4 � 1.1 � 5.2 27.2 � 2.1 0.67 � 0.20 12.3 � 0.6 1.49 � 0.44 0.182 � 0.020
�4 3.1 � 0.6 � 1.3 5.8 � 0.7 0.53 � 0.25 2.3 � 0.2 1.33 � 0.62 0.166 � 0.042
�5 0.24 � 0.24 � 0.28 0.080 � 0.109

TABLE I. W + �n jet cross sections. The �rst error on the data cross sections is the statistical error; the second includes
the systematic error on the W acceptance, the background systematic, and the jet-counting uncertainty, as described in the
text. The QCD Monte Carlo cross sections (BR � �QCD) are generated using VECBOS for Q2 scales of hpT i

2 and M2
W + p2TW .

The uncertainties for the theory are statistical.
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